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Introduction 

Alzheimer’s disease (AD) is a type of neurodegenerative 
disease characterized by learning and memory impairment, 
personality changes, and executive dysfunction (1). Although 
mental status examination and neuropsychological tests have 
been applied to assess the symptoms of mild cognitive 
impairment (MCI) and AD patients, neuroimaging methods 
such as magnetic resonance imaging (MRI) are used to 
identify structural changes in the AD brain (2).  

Neuroimaging findings revealed that multiple atrophy 
patterns are associated with MCI and AD (3, 4) which can help 
clinical guidelines to more accurately and earlier diagnose AD 
(5). Moreover, the rate of whole-brain atrophy is a valuable 
marker to predict the progression of AD in patients with MCI 
(6). Mainly, the patterns of atrophy were observed in the 
medial temporal lobe (7, 8), hippocampus, and posterior 
cingulate cortex of AD patients (9). 
A decline in the regional cerebral blood flow (CBF) is 
proposed to be one of the initial changes in the AD process 
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(10). Many investigations reported hypoperfusion in several 
brain regions such as the posterior cingulate gyrus and 
precuneus in MCI and AD patients (11, 12).  However, the 
cause of this decline is not fully understood to date. Mattsson 
et al. reported an association between the Amyloid βeta 
deposition and CBF pattern and also demonstrated that 
declined CBF is an early consequence of neural death prior to 
considerable grey matter loss (13). CBF can be quantified by 
Arterial Spin Labeling Magnetic Resonance Imaging (ASL 
MRI), a non-invasive technique with a short acquisition time 
utilized in many studies for detecting hypoperfusion patterns 
in MCI and AD patients (14). 
To date, there are limited data on the correlation between CBF 
decline and gray matter atrophy in MCI and AD patients (15). 
Investigating the correlation between CBF and structural 
parameters of the brain might expand our knowledge on 
pathological pathways involved in the cortical and subcortical 
changes of the brain. Therefore, the present study was 
undertaken to investigate the association between CBF with 
the gray matter structural parameters such as cortical volume, 
surface area, and thickness in regions known to be affected by 
AD progression in three groups of individuals, including 
healthy controls (HC), MCI, and AD subjects. 
 

Materials and Methods 
Participants and data acquisition 
The participants’ information was collected from the 
Alzheimer's Disease Neuroimaging Initiative (ADNI) 
database (http://www.loni.usc.edu/), launched by Michael W. 
Weiner in 2003, as a public-private partnership. The primary 
endpoint of ADNI has been to examine whether serial MRI, 
positron emission tomography (PET), biological marker 
examinations, and clinical/neuropsychological assessments 
can be combined to determine the progression of MCI and 
early AD. All participants with available data and imaging 
results were enrolled in this study. Demographic and clinical 
data of 149 subjects including 28 AD patients, 82 MCI 
patients, and 39 healthy subjects were obtained from the 
ADNI and analyzed in this study. The diagnostic status, Mini-
Mental State Examination (MMSE) score, and the result of 
apolipoprotein E gene (APOE) genotyping for each subject 
were collected, as well. Regions of interests (ROIs) including 
left and the right hippocampus, ACC, insula, inferior parietal 
cortex, middle frontal cortex, inferior temporal cortex, pre-
central cortex, post-central cortex, caudate-middle frontal 
cortex, and frontal poles, inferior frontal gyrus, superior 
frontal gyrus, inferior parietal gyrus, inferior temporal gyrus, 
middle temporal gyrus, post-central cortex, caudate-middle 
frontal cortex, entorhinal cortex, precuneus, and fusiform 
were entered to our analyses. 
MRI acquisition (T1, FLAIR) 
All ADNI individuals had T1 structural MRI and T2-FLAIR 
acquired on a 1.5 Tesla (T) or 3T scanner from Siemens, 
Philips, or General Electric. The ADNIMRI protocol is 
described in detail by Jack et al. (16). Accordingly, axial 3T 
FLAIR was acquired with voxel sizes of 0.85994 × 0.8594 × 5 
mm. Each image underwent quality control after acquisition 

at the Mayo Clinic (Rochester, MN), including image quality 
assessment, protocol compliance checks, and inspection for 
clinically significant medical abnormalities. 
Automatic segmentation with Freesurfer V 4.3 and 5.1 
Volumetric segmentation was performed using the FreeSurfer 
image analysis suite, which is freely available for download 
online (http://surfer.nmr.mgh.harvard.edu/). The processing 
consisted of motion correction of multiple T1-weighted 
images, removal of non-brain tissues, automated Talairach 
transformation, segmentation of subcortical white matter and 
gray matter structures, automated topology correction, and 
intensity normalization. For the quality control, the outcomes 
of the image were represented as Pass, Fail, Hippocampus-
Only, and Partial. Only images with the overall outcome of 
pass remained. 
Arterial spin labeling (ASL)-MRI processing 
ASL-MRI, as a completely non-invasive procedure, was used 
to measure the CBF by exploiting the endogenous spins of 
arterial water as a proxy for blood flow. Also, labeling 
magnetization of arterial spins was inverted selectively. The 
Center for Imaging of Neurodegenerative Diseases (CIND) 
prepared perfusion-weighted images (PWI), computed a map 
of CBF, and conducted a regional analysis with Freesurfer V 
4.3. ASL-MRI pre-processing consisted of three steps. PWI 
computations were done and the ASL images were separated 
into the two groups of tagged and untagged after motion 
correction, and the mean of each group was computed and 
saved. Next, the difference in the mean of the two groups was 
determined to obtain the PWI. The first untagged image was 
used as the reference for water density and termed “M0”. M0 
was used to calibrate the ASL signal for CBF computations and 
estimate the transformation from ASL-MRI and structural 
MRI, as an intermediate frame. The control (M0) image is 
scaled to estimate a map of the blood magnetization, Mblood 
by correcting for the lower density of tissue water relative to 
arterial blood water, λ, and for the different relaxation 
characteristics of tissue and arterial blood water, as follows:  
Mblood = M0/λ e^(〖(R* 2tissue- R* 2blood)〗^(T E) )  
where λ is the blood/water ratio in tissue, R∗ is the two 
relaxation rates and T E is the blood relaxation time. The third 
step was intensity scaling of PWI, as well as the M0 image. 
After geometric distortion correction and partial volume 
correction, the CBF was quantified in physical units by 
normalizing ASL to an estimated blood water density signal 
Statistical analysis 
Before the statistical analysis, variables without a normal 
distribution were log-transformed to meet the normality 
assumption. Demographic variables were compared between 
the groups using the ANOVA and Kruskal–Wallis for 
parametric and non-parametric variables respectively. Local 
associations between the CBF and structural variables were 
investigated using multivariable linear regression models. 
Regression models were implemented for each association  
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separately by adding CBF parameters and structural variables 
(i.e., cortical volume, thickness, and surface area) for each 
region as dependent and independent variables while entering 
age, sex, and APOE-ε4 genotyping status as controlled 
variables. The bootstrapping method was used for addressing 
type I errors due to multiple comparisons (17, 18). The 
significance level was set at 0.05, and statistical analysis was 
performed in SPSS version 22. 

Results 
Participants’ characteristics 
Table 1 presents the demographic and clinical data of the 
participants. There was no significant difference in terms of 
age, education, and sex among the groups. However, AD 
patients had significantly lower MMSE scores and more 
APOE-ε4 carriers as compared to the MCI and HC groups. 
Local correlation between CBF and thickness 
In all AD patients, negative correlations were found in two 
regions, including the posterior segment of the left middle 
frontal gyrus and the caudal part of the right anterior cingulate 
cortex (Table 2). The results of Pearson’s correlation analysis 
showed a positive correlation between the CBF and thickness 
in several regions in the MCI group, including left entorhinal 
area, left and right lateral occipital cortices, left and right 
superior parietal lobules, right inferior parietal lobule, 
posterior part of the right middle frontal gyrus, right superior 
frontal gyrus, right inferior temporal gyrus, right 
pericalcarine, right postcentral gyrus, right precentral gyrus. 
In contrast, we found a negative correlation between right 
anterior cingulate cortex thickness and CBF. In healthy 
subjects, significant correlations were found between the left 
entorhinal area and the rostral part of the left anterior 
cingulate cortex with CBF. 
Local correlation between CBF and cortical volume 
Pearson correlation coefficient revealed a significant 
correlation between the CBF and cortical volume in the MCI 
and HC groups but not in the AD group (Table 3). In the MCI 
group, significant positive correlations were observed between 
CBF and following regions: left and right postcentral gyrus, left 
and right precentral gyrus, left and right precuneus, right 
precuneus, left and right posterior cingulate cortex, caudal and 
rostral parts of the left anterior cingulate, right superior frontal 

gyrus, left and right superior parietal lobules, right inferior 
parietal lobule, left and right superior temporal gyri, right 
transverse temporal gyrus, left and right inferior temporal 
gyri, left middle temporal gyrus, left temporal gyrus, right 
lateral occipital gyrus, left and right supramarginal gyri, right 
insula, left entorhinal cortex, and right bankssts. In the HC 
group, significant positive correlations were found between 
CBF and left and right superior parietal gyri, right 
supramarginal gyrus, left entorhinal cortex, left fusiform 
gyrus, left medial orbital gyrus, anterior part of the left middle 
frontal gyrus, left temporal gyrus, right inferior temporal 
gyrus, and rostral part of the left anterior cingulate cortex. 
Local correlation between CBF and surface area 
Investigation of the local correlation between the CBF and 
surface area in the groups of the study revealed that this 
correlation in the AD patients was meaningful in the left 
inferior temporal gyrus and isthmus of the left cingulate gyrus, 
as shown in Table 4. In the MCI group, this significance was 
more than other groups and was found in the left and right 
precuneus, right superior and inferior parietal lobules, right 
superior temporal gyrus, left and right transverse temporal 
gyri, left inferior and middle temporal gyri, left temporal pole, 
caudal and rostral parts of the left anterior cingulate gyrus, left 
posterior cingulate gyrus, left supramarginal gyrus, right 
middle orbital gyrus, right bankssts, and right fusiform gyrus 
Moreover, significant correlations in the HC group were 
attributed to the following regions: right precentral gyrus, left 
and right superior parietal lobules, left and right 
supramarginal gyri, left fusiform gyrus, left and right lateral 
occipital gyri, right inferior and middle temporal gyri, and the 
orbital part of the left inferior frontal gyrus.  
Regions of interest are shown for a significant correlation 
between structural parameters and regional cerebral blood 
flow in Figure 1. 
 
Discussion 
In the present study, our findings showed a significant 
correlation between the CBF decline and gray matter atrophy 
in widespread regions measured as cortical volume, surface 
area, and thickness in HC, MCI, and AD subjects.  

Table1. Participants characteristic 
  

Variables HC (39) MCI (82) AD (28) P value 

Age, years 71.8(±6.8) 70.4(±7.4) 73.1 (±6.5) 0.186 

Gender(M/F) 15/24 41/41 14/14 0.469 
Education, years 16.2(±2.5) 16.5(2.7) 16.5(±2.2) 0.829 
MMSE  28.9(±1.4) 28.3(±1.6) 23.9(±1.9) 0 
APOE genotype 

  
0 

With out ε4 26 53 8 
 

One ε4 11 22 12 
 

Two ε4 1 7 8 
 

HC: healthy controls, MCI: mild cognitive impairment, AD: Alzheimer’s Disease, MMSE: mini mental 
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Recently, in contrast to our results, Kim et al. revealed no 
significant association between the CBF and cortical thickness 
in MCI patients and healthy people (19). In contrast to our 
findings, Luckhaus et al. found no significant association 
between atrophy and CBF in the early pathogenesis of AD 
(20). Generally, the CBF decline is one of the earliest events  
observed in patients with AD (21). Evidence on CBF changes 
in patients with MCI revealed that an increase or decrease in 
perfusion can be an early marker of neurodegeneration and 
may reflect metabolic demand changes in regions that are 
involved in cognitive function, including the temporal lobe, 
parietal lobe, frontal lobe, posterior cingulate gyrus, and 
precuneus (22, 23). The same patterns of atrophy especially in 
the medial temporal lobe also observed in AD and MCI 
patients (24, 25). There is a study that investigated the pattern 
of atrophy and CBF decline in AD and MCI patients reported 
both cerebral perfusion and gray matter structure reduced in 
the entorhinal cortex and the isthmus cingulate cortex (26). 
Our findings revealed that changes in the CBF are associated 
with structural parameters in various regions of the gray 
matter in AD, MCI, and HC subjects. The correlations were 
mostly found in the medial temporal, parietal, occipital, 
frontal, cingulate, and precuneus, which are thought to be 
enrolled in the early pathology of AD and cognitive decline 
(27). In line with our findings, Soman et al., there was a 
positive correlation between CBF and gray matter volume of 
the temporal neocortex (15). However, we found correlations 
in more regions such as the frontal, parietal, occipital, 
precentral gyrus, pericalcarine cortex, entorhinal cortex, 
supramarginal gyrus, fusiform, and pallidum. Notably, we 

found a correlation between the CBF and cortical volume and 
surface area in the posterior cingulate cortex and temporal 
pole of MCI patients, which are the main regions in the default 
mode network (DMN) (28). It should be mentioned that this 
association was mostly observed in MCI patients.  
According to our results, the CBF can reflect atrophy in the 
responsible regions in course of AD; however, the mechanisms 
of this hypoperfusion in the early stages of neurodegeneration 
are unclear. Evidence shows that the CBF decline can lead to 
Aβ and hyperphosphorylated tau accumulation (29). On the 
other hand, Aß monomers have been found to drive 
vasoconstriction in brain arterioles and potentially contribute 
to a reduction in resting cerebral blood flow and, therefore, 
CBF decline could be the result of Aβ pathology (30). Recent 
studies suggest that Aβ can impair the fundamental 
mechanisms of blood supply regulation (31, 32). However, 
several factors might account for this dysregulation in AD, 
such as impairment of endothelium-dependent responses, the 
hypercontractile phenotype of cerebral smooth muscle cells, 
and vascular oxidative stress (33). In this regard, Michels et al. 
observed a significant relationship between the CBF and 
APOE-ε4, independent of Aβ accumulation in MCI and 
normal elderly individuals (34).  
Significant correlations between the CBF and structural 
changes in the main brain regions involved in AD 
development, including the cingulate gyrus, temporal gyrus, 
parietal lobule, precuneus, and middle frontal gyri have been 
found in our study (25, 34).  There was a significant correlation 
between CBF and cortical volume and surface area in the 
precuneus which is not surprising considering its function in  

Table2. Significant Results of partial correlation analyses of CBF and Thickness within groups 
Regions β coefficient P value 

AD 
  

Posterior part of left middle frontal -0.457 0.033 
Caudal part of right anterior cingulate -0.544 0.005 
MCI 

  

Left entorhinal area 0.237 0.035 
Left lateral occipital 0.259 0.022 
Right lateral occipital 0.284 0.012 
Left superior parietal lobule 0.25 0.026 
Right superior parietal 0.357 0.001 
Posterior part of right middle frontal 0.288 0.01 
Right inferior parietal  0.316 0.005 
Right inferior temporal 0.299 0.011 
Right pericalcarine 0.234 0.039 
Right postcentral  0.231 0.04 
Right precentral 0.307 0.006 
Rostral part of right anterior cingulate -0.243 0.031 
Right superior frontal 0.303 0.007 
HC 

  

Left entorhinal area 0.4 0.017 
Rostral part of left anterior cingulate 0. 523 0.001 
Cerebral blood flow (CBF), Alzheimer’s disease (AD), mild cognitive impairment (MCI), healthy controls (HC) 
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Table3. Significant Results of partial correlation analyses of CBF and Cortical volume within groups 

Regions β coefficient P value 

MCI 
  

Right postcentral 0.284 0.011 

Right posterior cingulate 0.234 0.038 

Right precentral 0.286 0.011 

Right precuneus 0.387 0 

Right superior frontal 0.248 0.027 

Right superior parietal 0.372 0.001 

Right superior temporal 0.257 0.029 

Right supramarginal 0.266 0.018 

Right transverse temporal 0.244 0.03 

Right insula 0.255 0.023 

Caudal part of left anterior cingulate 0.272 0.015 

Left entorhinal 0.301 0.007 

Left inferior temporal 0.244 0.039 

left middle temporal 0.302 0.01 

Left paracentral 0.264 0.019 

Left postcentral 0.268 0.017 

Left posterior cingulate 0.256 0.023 

Left precentral 0.288 0.01 

Left precuneus 0.36 0.001 

Rostral part of left anterior cingulate 0.372 0.001 

Left superior parietal 0.297 0.008 

Left superior temporal 0.268 0.023 

Left supramarginal 0.32 0.004 

Left temporal 0.296 0.012 

right bankssts 0.258 0.022 

Right inferior parietal 0.46 0 

Right inferior temporal 0.351 0.003 

Right lateral occipital 0.274 0.015 

HC 
  

Right superior parietal 0.348 0.041 

Right supramarginal 0.346 0.042 

Left entorhinal 0.383 0.023 

Left fusiform 0.401 0.021 

Left medial orbital 0.385 0.022 

Anterior part of left middle frontal 0.374 0.027 

Left superior parietal 0.412 0.014 

Left temporal 0.368 0.035 

Right inferior temporal 0.406 0.019 

Rostral part of left anterior cingulate 0. 523 0.001 

Cerebral blood flow (CBF), Alzheimer’s disease (AD), mild cognitive impairment (MCI), healthy controls (HC) 
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Table4. Significant Results of partial Correlation Analyses of CBF and Surface area within groups 

Regions β coefficient P value 

AD 
  

Left inferior temporal 0.441 0.031 

Isthmus of left cingulate 0.458 0.021 

MCI 
  

Right precuneus 0.315 0.005 

Right superior parietal 0.254 0.024 

Right superior temporal 0.279 0.018 

Right transverse temporal 0.243 0.031 

Caudal part of left anterior cingulate 0.367 0.001 

Left inferior temporal 0.238 0.044 

left middle temporal 0.283 0.016 

Left posterior cingulate 0.249 0.027 

Left precuneus 0.312 0.005 

Rostral part of left anterior cingulate 0.387 0 

Left supramarginal 0.297 0.008 

Left temporal pole 0.259 0.028 

Left transverse temporal 0.252 0.025 

Right bankssts 0.282 0.012 

Right fusiform 0.274 0.02 

Right inferior parietal 0.338 0.002 

Right middle orbital 0.269 0.017 

HC 
  

Right precentral 0.379 0.025 

Right superior parietal 0.411 0.014 

Right supramarginal 0.383 0.023 

Left fusiform 0.458 0.007 

Left lateral occipital 0.388 0.021 

Orbital part of left inferior frontal 0.385 0.022 

Left superior parietal 0.441 0.008 

Left supramarginal 0.388 0.021 

Right inferior temporal 0.415 0.016 

Right lateral occipital 0.498 0.002 

Right middle temporal 0. 456 0.008 

Cerebral blood flow (CBF), Alzheimer’s disease (AD), mild cognitive impairment (MCI), healthy controls (HC) 
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visuospatial perception, episodic memory retrieval, and 
consciousness. Moreover, patients with MCI had lower 
cortical thickness in the precuneus compared to normal 
people (35).  
Our study has certain limitations such as a small sample size 
which influences the analyses. Also, our study is cross-
sectional, so we are unable to examine the longitudinal 
association between CBF and structural parameters.  
 

 
 

Conclusion 
According to the present results, CBF decline, as measured by 
ASL-MRI, is correlated with lower measures of structural 
parameters in AD responsible regions. It means that CBF 
decline may reflect AD-associated atrophy across disease 
progression and is also used as an early biomarker for AD and 
MCI diagnosis. However, there are some unresolved issues 
regarding the exact underlying pathology of CBF decline in 
AD development; therefore, further research is needed in this 
area. CBF decline may be a useful biomarker for MCI and AD 
and accurately reflect the structural changes related to AD. 
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