

doi https://doi.org/10.52547/nl.2.2.97

Can helicobacter pylori infection reduce the risk of Multiple sclerosis? A systematic review and meta-analysis

Fardin Nabizadeh^{1, 2}, Nazanin Rafiei³, Seyedeh Maryam Vafaei⁴, Mobin Azami⁵, Kimia Rasouli⁶, Elham Moases Ghaffary⁷, Omid Mirmosayyeb^{7*}

- 1- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- 2- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- 3- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- 4- School of medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
- 5- School of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran
- 6- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- 7- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: Several studies propose the protective effect of Helicobacter pylori (HP) in reducing the risk of Multiple sclerosis (MS) whereas the others reported high HP seropositivity in the MS population. Hence, we aimed to perform a comprehensive systematic review and meta-analysis to investigate the association between the risk of MS and HP infection.

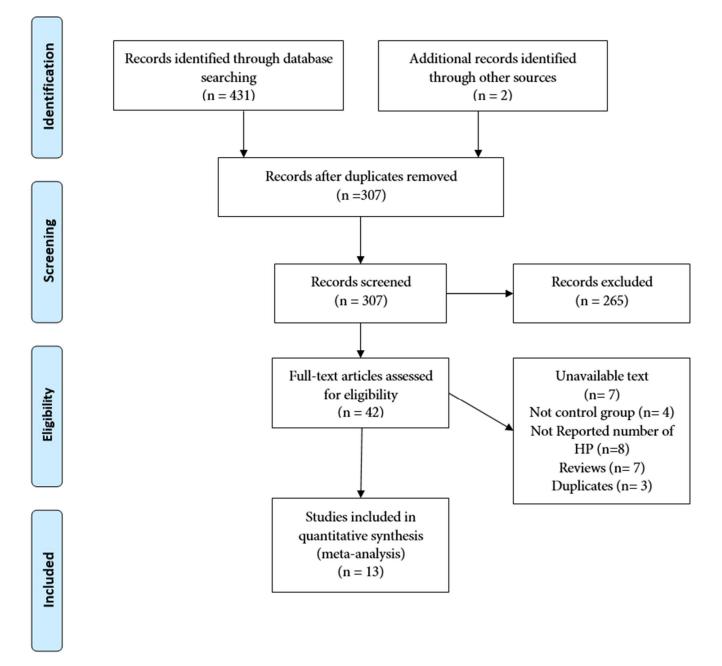
Methods: A systematic literature search was performed using three databases including PubMed, Scopus, and Web of Science in June 2022. We selected observational studies (cross-sectional, case-control, and cohort) that assessed the association between MS and HP.

Results: A total of 14 articles with 2307 patients with MS and 2024 controls were included in our systematic review and meta-analysis. The pooled odds ratio (OR) estimates for HP was 0.70 (CI 95%: 0.53-0.93) which indicates HP might reduce the risk of MS. The OR for HP in developed countries was 0.71 (CI 95%: 0.57-0.87) while it was 0.72 (CI 95%: 0.43-1.21) in developing countries. Furthermore, the pooled prevalence of HP in patients with MS was 45% (CI 95%: 35%-56%). The overall prevalence estimated for HP in MS patients in developed countries was 32% (CI 95%: 22%-41%). The prevalence of HP in MS patients from developing countries was 56% (CI 95%: 43%-69%) which was higher than in developed countries.

Conclusion: In conclusion, this systematic review and meta-analysis showed a lower rate of HP infection in patients with MS, suggesting that HP may reduce the risk of MS occurrence. However, further investigation with a large sample size while adjusting for the effect of other leading factors should be conducted to confirm our results.

Correspondence to Omid Mirmosayyeb, Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran Email: omid.mirmosayyeb@gmail.com Published online 30 August 2023

Keywords: Multiple sclerosis, Helicobacter pylori, infection, Meta-analysis


Cite this article as: Nabizadeh, F., Rafiei, N., Vafaei, S. M., Azami, M., rasouli, K., Moases Ghaffary, E., Mirmosayyeb, O. Can helicobacter pylori infection reduce the risk of Multiple sclerosis? A systematic review and meta-analysis. Neurology Letters, 2023; 2(2): 97-105. doi: 10.52547/nl.2.2.97.

Introduction

Multiple sclerosis (MS) is a multifactorial inflammatory autoimmune disorder with a chronic neurodegenerative process of the central nervous system (CNS). Approximately, 400,000 Americans who are mostly young, experience this disorder (1, 2). The unknown pathogenesis of MS is seemed to be a complex combination of host and environmental factors such as viruses, bacteria, or chemicals (3). Among many risk factors, infection plays a pivotal role in the acquisition of MS susceptibility or resistance (4-6).

Helicobacter pylori (HP) is a gram-negative widespread organism, that has the potential to infect more than 50% of individuals around the world (7). The prevalence of HP infection is associated with demographical factors such as geographic area, age, nationality, and socio-economic status so

Figure 1. PRISMA diagram of the selection process. PRISMA=Preferred Reported Items for Systematic Reviews and Meta-Analyses.

numerous incidence occurs in developing countries, especially with poor socioeconomic and low sanitary conditions (8, 9). Clinically, most of the HP positive patients have no symptoms; however, it can be presented as gastrointestinal tract diseases including a wide spectrum of chronic gastritis, peptic ulcer disease low-grade gastric mucosa-associated lymphoid tissue lymphoma, adenocarcinoma, and extra gut manifestations such as liver dysfunction, pancreatic carcinoma, cardiovascular disease, central nervous system (CNS) pathogenesis and autoimmune diseases (4, 7). Patients are commonly infected by HP in age under 2 years owing to the immaturity of parietal cells that do not secret gastric acid to inhibit pathogens; so once infected is equivalent to lifelong contamination (9).

According to a large number of studies, a steady rise in autoimmune disease in developed societies has been accompanied by a decrease in infectious diseases and the

Neurology Letters | www.neurologyletters.com

prevalence of MS has no exception to this hypothesis (10). HP infection in developed countries decreases over the past years whereas MS has substantially increased and it corresponds with the hygiene hypothesis, which suggested that the prevalence of allergic and autoimmune disorders such as MS increases as the incidence of infections decreases (7, 9). Due to this hypothesis, it is indicated that frequent infection in childhood reduces the MS occurrence, later in life (11). On the other hand, regarding recent studies, recurrent HP infection could display as a chronic antigen stimulus that triggers inflammatory response and autoimmunity leading to demyelination disorders like MS (5, 12). Based on shreds of evidence, some bacteria could be beneficial for hosts but some others could be a drawback (13). Several studies propose the protective effect of HP in reducing the risk of MS whereas others reported high HP seropositivity in the MS population (4, 7, 14).

The existence or absence of a correlation between HP infection and MS has not been clearly determined and their association is still a subject of controversy (8, 10, 14). A previous

YearContinentRegionstudyDiagnosis ofEDSS score,Number ofNumber of2006AsiaJapanCase-McDonald4.3±2.6105812006AsiaJapanCase-McDonald4.3±2.6105812009AsiaJapanCase-McDonald1.51212003AsiaJapanCase-McDonald1.51212004AsiaIranCase-McDonaldNIR782012AsiaIranCase-McDonald2.31±1.574221al. 2013AsiaChinaCase-McDonald3.03±2.2812794al. 2013AsiaJapanCose-McDonald3.03±2.2812794al. 2013AsiaJapanCose-McDonald3.03±2.2812794al. 2013AsiaIranCose-McDonald2.31±1.574276al. 2013AsiaIranCose-McDonald2.31±1.5716376al. 2013AsiaIranCose-McDonald2.31±1.5712194al. 2013AsiaIranCose-McDonald2.31±1.5712794al. 2013AsiaIranCose-McDonald2.31±1.5712794al. 2013AsiaIranCose-McDonald2.31±1.5716376al. 2015BuropeUnitedCrose-McDonald2.31±1.5716	EDSS score, mean SD	Man and Man and the					
		miller of Micall age of Mic males in group, years		Number of controls	Number of females in control	Mean age of control group, years	SON
	N	S					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.3±2.6 105	46.9	ELISA	85	64	43.5	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.5 (median) 162	1 39.7 (median)	ELISA	85	64	42 (median)	7
odi et al. control criteria 2010 anura et al. 2012 Asia Japan Case- McDonald 2.31±1.57 42 21 mura et al. 2013 Asia Japan Cross- McDonald 3.03±2.28 127 94 mura et al. 2013 Latin Multicenter Cross- McDonald 3.03±2.28 127 94 t al. 2013 Latin Multicenter Cross- McDonald NR 98 NR t al. 2013 Asia Iran Cross- McDonald NR 98 NR t al. 2013 Asia Iran Case- McDonald NR 76 2015 Asia India Cohort McDonald NR 71 51 2015 Europe United Cross- McDonald NR 71 51 2015 Europe United Cross- McDonald NR 71 51	NR	NR	Real-time polymerase	123	NR	NR	9
	criteria 2010		chain reaction (PCR) was employed in the detection				
			lori genome.				
at al. 2012 control criteria 2010 mura et al. 2013 Asia Japan control criteria 2005 94 at al. 2013 Latin Multicenter Cross- McDonald 3.03±2.28 127 94 bi et al. 2013 Latin Multicenter Cross- McDonald NR 98 NR bi et al. 2013 Anaerica Iran castional criteria 2010 2.3±1.5 163 76 bi et al. 2015 Asia India Cohort McDonald NR 139 92 ct al. 2015 Europe United Cross- McDonald NR 71 51 ct al. 2015 Europe United Cross- McDonald NR 71 51 ct al. 2015 Australia Australia sectional criteria 2010 NR 550 412 niou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 ar et al. 2015 Australia Australia Sectional criteria 2010 117 niou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2	2.31±1.57 42	33.86		27	16	31.96	8
mura et al. Z013 Asia Japan Cross- sectional mcDonadd criteria 2005 NR 2005 94 1 al. 2013 Latin Multicenter Cross- sectional McDonald NR 98 NR 1 al. 2013 America Iran corteria 2010 2.3±1.5 163 76 1 al. 2015 Asia Iran Case- control mcPonald 2.3±1.5 163 76 2 al. 2015 Asia India Cohort McDonald NR 139 92 2 al. 2015 Europe United Cross- McDonald NR 71 51 2 al. 2015 Australia Australia Cross- McDonald NR 71 51 2 al. 2015 Australia Australia Sectional criteria 2010 8 76 at et al. 2015 Australia Australia Sectional 3.5±2.2 139 98 ar et al. 2017 Europe Greece Cross- McDonald NR 71 51 ar et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 </td <td>201 000.000</td> <td></td> <td>immunofluorescence</td> <td></td> <td>i,</td> <td>Ĩ</td> <td>t</td>	201 000.000		immunofluorescence		i,	Ĩ	t
2013 Latin Multicenter Cross- McDonald NR 98 NR bi et al. 2013 Anaerica Iran correra 2010 Sectional Criteria 2010 Sectional 2.3±1.5 163 76 bi et al. 2015 Asia Iran Case- McDonald NR 98 NR 2015 Asia India Cohort McDonald NR 139 92 2015 Europe United Cross- McDonald NR 71 51 2015 Europe United Cross- McDonald NR 71 51 2015 Australia Australia Australia Sectional criteria 2010 NR 71 51 et al. 2015 Australia Australia Sectional criteria 2010 NR 71 51 i et al. 2015 Australia Australia Sectional criteria 2010 NR 550 412 niou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 ar et al. 2019 Asia Iran Case- McDonald 2.6 ± 1.4 387 200	McDonald 3.03±2.28 12/	51.45±12.92	FLISA	1//	NK	NK	/
t.al. 2013 America sectional criteria 2010 bi et al. 2013 Asia Iran case- McDonald 2.3±1.5 163 76 2015 Asia India Case- McDonald NR 139 92 2015 Europe United Cross- McDonald NR 71 51 2015 Europe United Cross- McDonald NR 71 51 2015 Australia Cross- McDonald NR 71 51 et al. 2015 Oustralia Cross- McDonald NR 71 51 i et al. 2015 Australia Cross- McDonald NR 71 51 niou et al. 2017 Europe Greece Cross- McDonald NR 71 51 niou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 ar et al. 2019 Asia Iran Case- McDonald 2.6±1.4 387 200 ar et al. 2019 Asia Iran Cross- McDonald 2.6±1.4 387 200 ar et al. <	McDonald NR 98	R NR	ELISA	140	NR	NR	9
bi et al. 2013 Asia Iran Case- McDonald 2.3±1.5 163 76 2015 Asia India Cohort McDonald NR 139 92 et al. 2015 Europe United Cross- McDonald NR 71 51 et al. 2015 Europe United Cross- McDonald NR 71 51 et al. 2015 Australia Australia Cross- McDonald NR 71 51 it et al. 2015 Australia Cross- McDonald NR 71 51 it et al. 2017 Europe Greece Cross- McDonald S.5±2.2 139 98 miou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 ar et al. 2019 Asia Iran Case- McDonald 2.6±1.4 387 200 control criteria 2017 Europe control criteria 2017 87MS0.0, 154 117 2020 Asia Iran Cross- McDonald RRMS0.0, 154 117 sectional criteria 2017 SPMS4.0							
2015 Asia India control criteria 2010 et al. 2015 Suppe United Cohort McDonald NR 139 92 at al. 2015 Europe United Cross- McDonald NR 71 51 at al. 2015 Europe United Cross- McDonald NR 71 51 it et al. 2015 Australia Coross- McDonald NR 71 51 niou et al. 2017 Europe Greece Cross- McDonald NR 550 412 niou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 ar et al. 2019 Asia Iran Case- McDonald 2.6 ± 1.4 387 200 ar et al. 2019 Asia Iran Cross- McDonald 2.6 ± 1.4 387 200 ar et al. 2019 Asia Iran Cross- McDonald 2.6 ± 1.4 387 200 ar et al. 2010 Asia Iran Cross- McDonald 2.6 ± 1.4 387 200 ar et al. 2019 Asia Iran Cross-<	2.3±1.5 163	32	ELISA	150	68	30	8
2015 Asia India Cohort McDonald NR 139 92 et al. 2015 Europe United Cross- McDonald NR 71 51 et al. 2015 Europe United Cross- McDonald NR 71 51 et al. 2015 Europe United Cross- McDonald NR 71 51 it et al. 2015 Australia Australia Cross- McDonald NR 550 412 niou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 ar et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 ar et al. 2019 Asia Iran Case- McDonald 2.6 ± 1.4 387 200 ar et al. 2019 Asia Iran Cross- McDonald 2.6 ± 1.4 387 200 2020 Asia Iran Cross- McDonald 2.6 ± 1.4 387 200 2020 Asia Iran Cross- McDonald 2.6 ± 1.4 387 200 2020 Asia Iran Cross-<	criteria 2010						
et al. 2015 criteria 2010 et al. 2015 Europe United Cross- McDonald NR 71 51 it et al. 2015 Australia Cross- McDonald NR 71 51 ni et al. 2015 Australia Australia Cross- McDonald NR 550 412 sectional criteria 2010 niou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 ar et al. 2019 Asia Iran Case- McDonald 2.6±1.4 387 200 ar et al. 2010 Asia Iran Case- McDonald 2.6±1.4 387 200 control criteria 2017 PMS.00, 154 117 sectional criteria 2017 SPMS.40	NR 139	36.56	ELISA	278	184	36.69	8
2015 Europe United Cross- McDonald NR 71 51 et al. 2015 Kingdom sectional criteria 2010 1 550 412 ni et al. 2015 Australia Australia Cross- McDonald NR 550 412 niou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 niou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 ar et al. 2019 Asia Iran Case- McDonald 2.6±1.4 387 200 ar et al. 2019 Asia Iran Case- McDonald 2.6±1.4 387 200 asatypeb et 2020 Asia Iran Cross- McDonald 2.6±1.4 387 200	criteria 2010						
et al. 2015 Kingdom sectional criteria 2010 i et al. 2015 Australia Australia Cross- McDonald NR 550 412 niou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 ar et al. 2019 Asia Iran Cross- McDonald 2.6±1.4 387 200 ar et al. 2010 Asia Iran Cross- McDonald 2.6±1.4 387 200 control criteria 2017 2.6±1.4 117 2020 Asia Iran Cross- McDonald RRMS.0.0, 154 117 sectional criteria 2017 SPMS.4.0	McDonald NR 71	53	ELISA	42	27	50	7
ni et al. 2015 Australia Australia Cross- McDonald NR 550 412 sectional criteria 2010 niou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 ar et al. 2019 Asia Iran case- McDonald 2.6±1.4 387 200 ar et al. 2010 Asia Iran Case- McDonald 2.6±1.4 387 200 control criteria 2017 2.6±1.4 117 2020 Asia Iran Cross- McDonald RRMS.0.0, 154 117 sectional criteria 2017 SPMS.4.0							
sectional criteria 2010 niou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 ar et al. 2019 Asia Iran Case- McDonald 2.6±1.4 387 200 2020 Asia Iran Control criteria 2017 2020 Asia Iran Cross- McDonald RRMS.0.0, 154 117 sectional criteria 2017 SPMS.4.0	NR 550	2 47.7	ELISA	299	218	43.7	8
miou et al. 2017 Europe Greece Cross- McDonald 3.5±2.2 139 98 aar et al. 2019 Asia Iran Case- McDonald 2.6±1.4 387 200 2020 Asia Iran Case- McDonald 2.6±1.4 387 200 control criteria 2017 2017 2020 Asia Iran Cross- McDonald RRMS.0.0, 154 117 osayyeb et sectional criteria 2017 SPMS.4.0							
2019 Asia Iran Case- McDonald 2.6±1.4 387 200 2017 control criteria 2017 2017 202 202 117 2020 Asia Iran Cross- McDonald RRMS.0.0, 154 117 2020 Asia Iran criteria 2017 SPMS.4.0 117	McDonald 3.5±2.2 139 criteria 2010	43.2	ELISA	68	40	47.4	7
control criteria 2017 2020 Asia Iran Cross- McDonald RRMS:0.0, 154 117 sectional criteria 2017 SPMS:4.0	McDonald 2.6 ± 1.4 387	0 31	ELISA	420	218	32	8
2020 Asia Iran Cross- McDonald RRMS:0.0, 154 117 sectional criteria 2017 SPMS:4.0	criteria 2017						
sectional criteria 2017 SPMS:4.0	RRMS:0.0, 154		ELISA	39	30	36.84	8
	criteria 2017	RRMS:36.45,					
(median)	(median)	SPMS:39.82					
2020 Asia Iran Case- McDonald NR 92 81	NR 92	36.88	ELISA	91	79	38.55	7
Kiani et al. 2020 control criteria 2017	criteria 2017						

Study Developed Countries Li et al. 2006 Li et al. 2009 Cook et al. 2015 Pedrini et al. 2015	Yes 39 67 15	No 66 95	Yes 36	No 49	with 95% CI	(%)
Li et al. 2006 Li et al. 2009 Cook et al. 2015	67		36	49		
Li et al. 2009 Cook et al. 2015	67		36	49		
Cook et al. 2015		95		40] 7.27
	15		36	49		7.68
Pedrini et al. 2015		56	14	28	0.54 [0.23, 1.26	5.36
	73	477	64	235] 8.92
Efthymiou et al. 2017	60	79	33	35	0.81 [0.45, 1.44] 7.29
Yoshimura et al. 2013	44	83	74	103		8.15
Heterogeneity: T ² = 0.00, I ² :	= 0.00	%, H	² = 1.0	0	• 0.71 [0.57, 0.87	1
Test of $\theta_i = \theta_j$: Q(5) = 3.56,	p = 0	61				
Developing Countries						
Ramroodi et al. 2012	20	58	27	96	1.23 [0.63, 2.38	6.68
Long et al. 2012	31	11	16	11	• 1.94 [0.69, 5.43	4.41
Ram et al. 2013	78	20	113	27	0.93 [0.49, 1.78	6.81
Mohebi et al. 2013	88	75	110	40	 0.43 [0.27, 0.69] 8.12
Malli et al. 2015	31	108	64	75	0.34 [0.20, 0.57] 7.77
Ranjbar et al. 2019	188	199	298	122		9.48
Mirmosayyeb et al. 2020	74	80	11	28	 2.35 [1.09, 5.06	5.96
Kiani et al. 2020	66	26	78	13	0.42 [0.20, 0.89	6.12
Heterogeneity: T ² = 0.45, I ² =	= 84.8	8%, ł	H ² = 6.	61	0.72 [0.43, 1.21]
Test of $\theta_i = \theta_j$: Q(7) = 38.32	2, p = 0	0.00				
Overall					• 0.70 [0.53, 0.93]
Heterogeneity: T ² = 0.20, I ² :	= 73.0	2%, ł	H ² = 3.	71		
Test of $\theta_i = \theta_j$: Q(13) = 45.7	70, p =	0.00				
Test of group differences:	Q _b (1)	= 0.0	1, p =	0.94		
					1/4 1/2 1 2 4	

Figure2. Forest plot of HP in patients with MS versus controls

between HP and MS, but we believed that a new study with a better methodology is required (15). Hence, we aimed to perform a comprehensive systematic review and meta-analysis to investigate the association between the risk of MS and HP infection.

Methods

The Current systematic review and meta-analysis were conducted based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement guidelines (16).

Search strategy

A systematic literature search was performed using three databases including PubMed, Scopus, and Web of Science in June 2022. The following terms were used in our search strategy: (Helicobacter pylori) or (H. pylori) or (Campylobacter pylori) and (Multiple sclerosis). Potential studies were identified via hand-searching the reference list of review articles.

Eligibility criteria

We selected peer-reviewed observational studies (crosssectional, case-control, and cohort) that assessed the association between MS and HP. The included studies had to provide information on MS diagnosis and a control group (healthy individuals) as a reference group. We excluded review articles, case reports, conference abstracts, case series, and studies with patients on HP eradication.

Study selection

Two reviewers (N.R, M.V) independently screened the studies in a two-step process. First, the title and abstract were reviewed and irrelevant articles were excluded. Then the full text of remained studies was carefully screened and final eligible papers were selected. Any disagreements were resolved by consulting with a third investigator (F.N).

Data extraction

The following variables were obtained from selected studies by the same reviewers (N.R, M.V): Author, year of publication, country, study design, diagnosis criteria for MS, number of patients with MS, mean EDSS score, the mean age of patients with MS, number of females in patients with MS, the definition of the control group, number of the control group, the mean age of control group, number of females in the control group, HP diagnosis method, number of cases with HP in MS group, number of cases with HP in the control group.

Quality assessments

The Newcastle–Ottawa scale (NOS) was used to measure the quality of included studies in aspects including the selection of the participants, comparability of study groups, and outcome assessment with a score ranging from 0 to 8 (17).

Statistical analysis

We used Stata 11.0 (College Station, TX) was used to perform statistical analyses. The odds ratio (OR) using the randomeffect model with a 95% confidence interval (CI) for the association measures among included studies. I-squared (I2) and Q tests were used to assess the heterogeneity. Sub-group analysis was performed based on the country of origin (developed or developing) obtained from the UN (www.un.org).

Results

The initial search and manual adding yielded 307 studies after duplicate removal (Figure 1). After title and abstract screening, 265 studies were excluded. Finally, 14 articles were included in our systematic review and meta-analysis (18-31). Overall, 2307 patients with MS and 2024 controls entered our study (Table 1). Moreover, seven studies were case-control, five were crosssectional, and one was a cohort. The mean NOS score was 7.28 which is quietly acceptable.

Meta-analysis

Study			Effect size with 95% CI	Weight (%)
Developed countries				
Li et al. 2006		-	0.37 [0.28, 0.46]	7.08
Li et al. 2009		-	0.41 [0.34, 0.49]	7.21
Cook et al. 2015	-	-	0.21 [0.12, 0.31]	7.06
Pedrini et al. 2015	•		0.13 [0.10, 0.16]	7.46
Efthymiou et al. 2017		-	0.43 [0.35, 0.51]	7.16
Yoshimura et al. 2013		-	0.35 [0.26, 0.43]	7.16
Heterogeneity: r ² = 0.01, I ² = 92.04%, H ² = 12.57		-	0.32 [0.22, 0.41]	
Test of $\theta_i = \theta_j$: Q(5) = 105.98, p = 0.00				
Deveoping countries				
Ramroodi et al. 2012		-	0.50 [0.39, 0.61]	6.91
Long et al. 2012			- 0.74 [0.61, 0.87]	6.68
Ram et al. 2013			0.80 [0.72, 0.88]	7.18
Mohebi et al. 2013			0.54 [0.46, 0.62]	7.21
Malli et al. 2015	-	-	0.22 [0.15, 0.29]	7.26
Ranjbar et al. 2019		+	0.49 [0.44, 0.54]	7.37
Mirmosayyeb et al. 2020			0.48 [0.40, 0.56]	7.19
Kiani et al. 2020			0.72 [0.63, 0.81]	7.08
Heterogeneity: $\tau^2 = 0.03$, $I^2 = 95.31\%$, $H^2 = 21.32$ Test of $\theta_i = \theta_i$: Q(7) = 147.85, p = 0.00		-	0.56 [0.43, 0.69]	
Overall			0.451.0.25.0.561	
Heterogeneity: $\tau^2 = 0.04$, $I^2 = 96.78\%$, $H^2 = 31.07$			0.45 [0.35, 0.56]	
Heterogeneity: $f = 0.04$, $f = 96.78\%$, $H = 31.07$ Test of $\theta_i = \theta_j$: Q(13) = 535.93, p = 0.00				
Test of group differences: $Q_b(1) = 8.48$, p = 0.00	0	.5		
Random-effects	0	с.	1	

Figure3. Forest plot of prevalence of HP in patients with MS

The pooled OR estimates for HP were 0.70 (CI 95%: 0.53-0.93, Q: 45.70, I2: 73.02%, p< 0.001) which indicates HP might reduce the risk of MS (Figure 2). The OR for HP in developed countries was 0.71 (CI 95%: 0.57-0.87, Q: 3.56, I2: 0%, p:0.61) while it was 0.72 (CI 95%: 0.43-1.21, Q: 38.32, I2: 84.88%, p< 0.001) in developing countries.

Furthermore, the pooled prevalence of HP in patients with MS was 45% (CI 95%: 35%-56%, Q: 535.93, I2: 96.78%, p< 0.001) (Figure 3). The overall prevalence estimated for HP in MS patients in developed countries was 32% (CI 95%: 22%-41%, Q: 105.98, I2: 92.04%, p< 0.001). The prevalence of HP in MS patients from developing countries was 56% (CI 95%: 43%-69%, Q: 151.10, I2: 95.42%, p< 0.001) which was higher than in developed countries. Furthermore, the prevalence of HP in our controls was 49% (CI 95%: 37%-60%, Q: 611.50, I2: 97.05%, p< 0.001)(Figure 4). The sub-group analysis for HP among controls showed a prevalence of 38% (CI 95%: 29%-46%, Q: 41.88, I2: 81.77%, p< 0.001) in developed countries and 57% (CI 95%: 39%-74%, Q: 405.87, I2: 98.06%, p< 0.001) in developing countries.

Discussion

This meta-analysis aimed to assess the association between H. pylori infection and the occurrence of MS. The results showed that the risks of H. pylori infection are lower among MS patients with pooled OR of 0.70, suggesting a protective effect against MS. Also, the prevalence of H. pylori was 46% among MS patients, demonstrating less percentage than the normal population (32).

H. pylori can affect the human body in multiple ways. It has extra-gastric side effects such as cardiovascular, hepatobiliary, dermatologic, neurological, etc.; Neurological disorders like Alzheimer's disease (AD), Parkinson's disease (PD), Guillain-Barré syndrome (GBS), and MS are companies with H. pylori (33). Multiple pathways induce protective effects by H. pylori for MS (34). The first one is the hygiene hypothesis which indicates that lower exposure to pathogens results in immunemediated diseases in later life (35). Inhibition of Th1 and Th17 responses that increase IL-10 and decrease IFN-y, TNF-a, IL-6, and IL-17 is one of the reasons for these protective effects (8, 34). Elevated Foxp3+ regulatory T cells, T cell apoptosis, and decreased Myelin oligodendrocyte glycoprotein (MOG) are other reasons to conserve MS (25). Heat shock proteins (HSPs), especially HSP60 and HSP70, are overexpressed in MS patients' brains (34, 36). Positive anti-aquaporin 4 (AQP4) antibodies have higher HP seropositivity, which can be another protective mechanism (5, 37). Therefore, these effects suggest that the gut-brain axis interferes with the function of the blood-brain barrier (BBB), which causes changes in the immune system and inflammatory cytokines response to HP (38, 39). Accessing the brain via an oral-nasal-olfactory pathway can be another HP mechanism to affect the brain (40). So, the main mechanism that affects HP on MS changes in the autoimmunity of the disease.

Although the exact cause of MS is unknown yet, the multifactorial model is widely believed which demonstrates that environmental factors such as infections can trigger the immune response and cause MS in genetically susceptible persons (41). Previous studies indicated the role of Epstein–Barr virus (EBV) infection in MS initiation and there was a strong association between the level of antibodies against EBV and MS (42). Moreover, a previous investigation indicated that about 10% of MS patients produced antibodies against Clostridium perfingens epsilon toxin (43). Also, in the COVID-19 pandemic, several cases of triggered MS and other autoimmune diseases were introduced (1, 44).

Our findings demonstrated that HP can reduce the risk of MS consistent with the results of previous systematic reviews and meta-analyses that investigated the association between HP infection and MS. However, a low number of studies and lack

Study		Effect size with 95% Cl	Weigh (%)
Developed countries			
Li et al. 2006		0.42 [0.32, 0.53]	7.10
Li et al. 2009		0.42 [0.32, 0.53]	7.10
Cook et al. 2015		0.33 [0.19, 0.48]	6.76
Pedrini et al. 2015	+	0.21 [0.17, 0.26]	7.45
Efthymiou et al. 2017		0.49 [0.37, 0.60]	6.98
Yoshimura et al. 2013	-	0.42 [0.35, 0.49]	7.32
Heterogeneity: r ² = 0.01, I ² = 81.77%, H ² = 5.48	-	0.38 [0.29, 0.46]	
Test of $\theta_i = \theta_j$: Q(5) = 41.88, p = 0.00			
Developing countries			
Ramroodi et al. 2012	—	0.33 [0.24, 0.41]	7.26
Long et al. 2012	_	0.59 [0.41, 0.78]	6.31
Ram et al. 2013		0.81 [0.74, 0.87]	7.36
Mohebi et al. 2013		0.73 [0.66, 0.80]	7.33
Malli et al. 2015	•	0.23 [0.18, 0.28]	7.44
Ranjbar et al. 2019	-	0.71 [0.67, 0.75]	7.46
Mirmosayyeb et al. 2020		0.28 [0.14, 0.42]	6.78
Kiani et al. 2020		0.86 [0.79, 0.93]	7.33
Heterogeneity: τ^2 = 0.06, I^2 = 98.03%, H^2 = 50.65 Test of θ_i = θ_j : Q(7) = 400.85, p = 0.00		0.57 [0.39, 0.75]	
Overall	-	0.49 [0.37, 0.60]	
Heterogeneity: τ ² = 0.05, l ² = 97.05%, H ² = 33.95			
Test of $\theta_i = \theta_j$: Q(13) = 611.50, p = 0.00			
Test of group differences: $Q_b(1) = 3.68$, p = 0.06		-	
	.2 .4 .6 .8	1	

Figure4. Forest plot of prevalence of HP in patients with controls

of subgroup analysis were limitations of the previous investigation (14). Our study probed the association between MS and HP infection separately in developing and developed counties and found that the association between MS and HP and also, the prevalence of HP among MS patients was higher in developing countries. Income, educational and economic situation, and environmental health factors are differences between developing and developed countries (45).

A previous systematic review and meta-analysis by Arjmandi et al. investigated the association between HP and MS recently (15). They found that there was no protective effect for HP against MS which depends on diagnostic tests also. However, there are several differences between the current study and Arjmandi et al. investigation. First, they included not peerreviewed papers in the analysis. Second, their results were mainly derived from two studies by an author which suspects having similar participants with significantly different OR from the other included articles which might be due to the use of histology for HP diagnosis and also shared similar participants (46, 47). Third, the two articles were missed in their study which was included in the current investigation (18, 22). The mentioned differences can suggest that there is no certain conclusion regarding the protective effect of HP against MS and further studies are required to confirm these results.

This study had several strengths. First, this study updates previous studies and has a bigger sample size by searching in more databases. Second, studies were chosen in different countries, so we performed a sub-group analysis based on whether the study was conducted in a developed or developing country. However, there were some limitations. First, this study had high heterogeneity due to different study designs, sub-types of MS, and diagnostic methods for detecting HP infection (Western Blot, immunofluorescence, and ELISA). Second, there was no history of eradication in patients with HP infection, which affects the presence of HP. Third, some of the included studies had a small number of subjects, reducing the analysis's power.

In conclusion, this systematic review and meta-analysis showed a lower rate of HP infection in patients with MS, suggesting that HP may reduce the risk of MS occurrence. However, further investigation with a large sample size while adjusting for the effect of other leading factors should be conducted to confirm our results.

Deceleration

Funding

We do not have any financial support for this study.

Conflict of interest

The author declares no conflict of interest regarding the publication of this paper.

Ethical approval

Not applicable

Availability of data and material

The datasets analyzed during the current study are available upon request with no restriction.

Consent for publication

This manuscript has been approved for publication by all authors.

References

1. Nabizadeh F, Ramezannezhad E, Kazemzadeh K, Khalili E, Ghaffary EM, Mirmosayyeb O. Multiple sclerosis relapse after COVID-19 vaccination: A case report-based systematic review. Journal of Clinical Neuroscience. 2022;104:118-25.

2. Nabizadeh F, Balabandian M, Rostami MR, Owji M, Sahraian MA, Bidadian M, et al. Association of cognitive impairment and quality of life in patients with multiple sclerosis: A cross-sectional study. Current Journal of Neurology. 2022:-.

3. Nabizadeh F, Pirahesh K, Rafiei N, Afrashteh F, Ahmadabad MA, Zabeti A, et al. Autologous Hematopoietic Stem-Cell Transplantation in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Neurology and Therapy. 2022.

4. Yao G, Wang P, Luo X-D, Yu T-M, Harris RA, Zhang X-M. Metaanalysis of association between Helicobacter pylori infection and multiple sclerosis. Neuroscience letters. 2016;620:1-7.

5. Long Y, Gao C, Qiu W, Hu X, Shu Y, Peng F, et al. Helicobacter pylori infection in neuromyelitis optica and multiple sclerosis. Neuroimmunomodulation. 2013;20(2):107-12.

6. Yoshimura S, Isobe N, Matsushita T, Masaki K, Sato S, Kawano Y, et al. Genetic and infectious profiles influence cerebrospinal fluid IgG abnormality in Japanese multiple sclerosis patients. PLoS One. 2014;9(4):e95367.

7. Kountouras J, Papaefthymiou A, Gavalas E, Polyzos SA, Boziki M, Kyriakou P, et al. Helicobacter pylori infection as a potential risk factor for multiple sclerosis. Medical hypotheses. 2020;143:110135.

8. Ranjbar R, Karampoor S, Jalilian FA. The protective effect of Helicobacter Pylori infection on the susceptibility of multiple sclerosis. Journal of neuroimmunology. 2019;337:577069.

9. Kira J-i. Helicobacter pylori infection might prove the hygiene hypothesis in multiple sclerosis. BMJ Publishing Group Ltd; 2015. p. 591-2.

10. Pedrini MJF, Seewann A, Bennett KA, Wood AJ, James I, Burton J, et al. Helicobacter pylori infection as a protective factor against multiple sclerosis risk in females. Journal of Neurology, Neurosurgery & Psychiatry. 2015;86(6):603-7.

11. McCune A, Lane A, Murray L, Harvey I, Nair P, Donovan J, et al. Reduced risk of atopic disorders in adults with Helicobacter pylori infection. European journal of gastroenterology & hepatology. 2003;15(6):637-40.

12. Li W, Minohara M, Su JJ, Matsuoka T, Osoegawa M, Ishizu T, et al. Helicobacter pylori infection is a potential protective factor against conventional multiple sclerosis in the Japanese population. Journal of neuroimmunology. 2007;184(1-2):227-31.

13. Cossu D, Yokoyama K, Hattori N. Bacteria-host interactions in multiple sclerosis. Frontiers in Microbiology. 2018:2966.

14. Jaruvongvanich V, Sanguankeo A, Jaruvongvanich S, Upala S. Association between Helicobacter pylori infection and multiple sclerosis: A systematic review and meta-analysis. Multiple sclerosis and related disorders. 2016;7:92-7.

15. Arjmandi D, Abdollahi A, Ardekani A, Razavian I, Razavian E, Sartip B, et al. Helicobacter pylori infection and risk of multiple sclerosis: An updated meta-analysis. Helicobacter. 2022;27(6):e12927.

16. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

17. Lo CK-L, Mertz D, Loeb M. Newcastle-Ottawa Scale: comparing reviewers' to authors' assessments. BMC Medical Research Methodology. 2014;14(1):45.

18. Li W, Minohara M, Su JJ, Matsuoka T, Osoegawa M, Ishizu T, et al. Helicobacter pylori infection is a potential protective factor against conventional multiple sclerosis in the Japanese population. Journal of Neuroimmunology. 2007;184(1-2):227-31.

19. Li W, Minohara M, Piao H, Matsushita T, Masaki K, Matsuoka T, et al. Association of anti-Helicobacter pylori neutrophil-activating protein antibody response with anti-aquaporin-4 autoimmunity in Japanese patients with multiple sclerosis and neuromyelitis optica. Mult Scler. 2009;15(12):1411-21.

20. Sanadgol N, N R, L V. Relationship between Helicobacter pylori (H. pylori) infection and Multiple sclerosis (MS) in southeast of Iran. African journal of microbiology research. 2012;6.

21. Long Y, Gao C, Qiu W, Hu X, Shu Y, Peng F, et al. Helicobacter pylori infection in Neuromyelitis Optica and Multiple Sclerosis. Neuroimmunomodulation. 2013;20(2):107-12.

22. Ram M, Barzilai O, Shapira Y, Anaya JM, Tincani A, Stojanovich L, et al. Helicobacter pylori serology in autoimmune diseases - fact or fiction? Clin Chem Lab Med. 2013;51(5):1075-82.

23. Mohebi N, Mamarabadi M, Moghaddasi M. Relation of helicobacter pylori infection and multiple sclerosis in Iranian patients. Neurol Int. 2013;5(2):31-3.

24. Malli C, Pandit L, D'Cunha A, Mustafa S. Environmental factors related to multiple sclerosis in Indian population. PLoS One. 2015;10(4):e0124064.

25. Cook KW, Crooks J, Hussain K, O'Brien K, Braitch M, Kareem H, et al. Helicobacter pylori infection reduces disease severity in an experimental model of multiple sclerosis. Frontiers in Microbiology. 2015;6.

26. Pedrini MJ, Seewann A, Bennett KA, Wood AJ, James I, Burton J, et al. Helicobacter pylori infection as a protective factor against multiple sclerosis risk in females. J Neurol Neurosurg Psychiatry. 2015;86(6):603-7.

27. Efthymiou G, Dardiotis E, Liaskos C, Marou E, Tsimourtou V, Rigopoulou EI, et al. Immune responses against Helicobacter pylori-specific antigens differentiate relapsing remitting from secondary progressive multiple sclerosis. Scientific Reports. 2017;7(1):7929.

28. Ranjbar R, Karampoor S, Jalilian FA. The protective effect of Helicobacter Pylori infection on the susceptibility of multiple sclerosis. J Neuroimmunol. 2019;337:577069.

29. Mirmosayyeb O, Barzegar M, Nehzat N, Najdaghi S, Ansari B, Shaygannejad V. Association of helicobacter pylori with multiple sclerosis: Protective or risk factor? Current Journal of Neurology. 2020;19(2):59-66.

30. Kiani S, Vakilian A, Kamiab Z, Shamsizadeh A. Correlation of Dietary Intake and Helicobacter pylori Infection with Multiple Sclerosis, a Case-Control Study in Rafsanjan, Iran, 2017-18. Qatar Med J. 2020;2020(3):45.

31. Yoshimura S, Isobe N, Matsushita T, Yonekawa T, Masaki K, Sato S, et al. Distinct genetic and infectious profiles in Japanese neuromyelitis optica patients according to anti-aquaporin 4 antibody status. Journal of Neurology, Neurosurgery & amp; amp; Psychiatry. 2013;84(1):29.

32. Mégraud F. H pylori antibiotic resistance: prevalence, importance, and advances in testing. Gut. 2004;53(9):1374-84.

33. Gravina AG, Zagari RM, De Musis C, Romano L, Loguercio C, Romano M. Helicobacter pylori and extragastric diseases: A review. World journal of gastroenterology. 2018;24(29):3204.

34. Baj J, Forma A, Flieger W, Morawska I, Michalski A, Buszewicz G, et al. Helicobacter pylori Infection and Extragastric Diseases—A Focus on the Central Nervous System. Cells. 2021;10(9):2191.

 Wendel-Haga M, Celius EG. Is the hygiene hypothesis relevant for the risk of multiple sclerosis? Acta Neurologica Scandinavica. 2017;136:26-30.
 Cremonini F, Gasbarrini A. Atopy, Helicobacter pylori and the hygiene hypothesis. European journal of gastroenterology & hepatology. 2003;15(6):635-6.

37. Khodkam M. Neuroinflammation and Neurodegenerative disease. Neurology Letters. 2022;1(1, Continuous):17-9.

38. Álvarez-Arellano L, Maldonado-Bernal C. Helicobacter pylori and neurological diseases: Married by the laws of inflammation. World journal of gastrointestinal pathophysiology. 2014;5(4):400.

39. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of gastroenterology: quarterly publication of the Hellenic Society of Gastroenterology. 2015;28(2):203.

40. Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. Acta neuropathologica. 2014;127(4):459-75.

41. Bordi I, Ricigliano VA, Umeton R, Ristori G, Grassi F, Crisanti A, et al. Noise in multiple sclerosis: unwanted and necessary. Ann Clin Transl Neurol. 2014;1(7):502-11.

42. Handel AE, Williamson AJ, Disanto G, Handunnetthi L, Giovannoni G, Ramagopalan SV. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One. 2010;5(9).

43. Rumah KR, Linden J, Fischetti VA, Vartanian T. Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS One. 2013;8(10):e76359.

44. Nabizadeh F, Balabandian M, Sodeifian F, Rezaei N, Rostami MR, Naser Moghadasi A. Autoimmune encephalitis associated with COVID-19: A systematic review. Multiple Sclerosis and Related Disorders. 2022;62:103795.
45. Bardhan PK. Epidemiological features of Helicobacter pylori infection in developing countries. Clinical infectious diseases. 1997;25(5):973-8.

46. Gavalas E, Kountouras J, Deretzi G, Boziki M, Grigoriadis N, Zavos C, et al. Helicobacter pylori and multiple sclerosis. Journal of Neuroimmunology. 2007;188(1-2):187-9.

47. Gavalas E, Kountouras J, Boziki M, Zavos C, Polyzos SA, Vlachaki E, et al. Relationship between Helicobacter pylori infection and multiple sclerosis. Ann Gastroenterol. 2015;28(3):353-6.