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Introduction 

Alzheimer's disease (AD) is one of the most common 
neurodegenerative disorders and the leading cause of dementia 
worldwide. The neuropathological hallmarks of AD include the 
extracellular aggregation of amyloid-β (Aβ) plaques, 
intracellular deposition of neurofibrillary tangles containing 
phosphorylated tau protein, and synaptic loss (1). Synapses are 
crucial for cognitive function, and synaptic impairment is a 

pathological feature of AD. Quantitative morphometric studies 
have demonstrated a 25-35% decline in synaptic density in the 
temporal and frontal cortical biopsies of patients within 2-4 
years of AD onset (2). In AD patients, synaptic loss primarily 
occurs in the neocortex and hippocampus (3). Synaptic damage 
and cell loss lead to brain atrophy, and synaptic dysfunction is 
associated with cognitive impairment in AD (4). 
Evaluating synaptic dysfunction in vivo could guide AD clinical 
research and provide biomarkers for outcome  

Original Communication  
 

Level of CSF GAP-43 and white matter microstructural 
changes in Alzheimer's disease 
Marjan Assefi1 *, Alireza Sharafshah2, Atefeh Ashtari1, Sayeh Afshar1, Keysan Pour Moghtader2,  
Yasir  Waheed3, and the Alzheimer’s Disease Neuroimaging Initiative** 

Abstract 

Objectives: Several studies have reported altered cerebrospinal fluid (CSF) concentrations of 
presynaptic proteins, such as growth-associated protein 43 (GAP-43) in Alzheimer's disease (AD)  
patients. Given the potential predictive role of CSF GAP-43 for AD, the current study aimed to 
investigate the relationship between CSF GAP-43 levels and DTI-detected microstructural 
changes in the white matter (WM). 

Methods: Data from three groups of participants including 39 control normals (CN), 138 MCI, 
and 39 AD subjects were obtained from the Alzheimer’s disease Neuroimaging Initiative (ADNI). 
Linear regression was used to the association of CSF-GAP43 and DTI values (including MD, RD, 
AxD, and FA) in the brain. 

Results: We found a significant association between CSF-GAP43 and FA (p-value = 0.011). Also, 
a negative association was found between CSF-GAP43 concentration and AD, MD, and RD values 
in MCI (p-value = 0.013, p-value = 0.004, p-value = 0.017). The regression models also revealed a 
positive association between CSF-GAP43 and FA value in AD subjects (p-value = 0.028). 
Furthermore, increased CSF-GAP43 level was associated with lower AD, MD, and RD values in 
brain WM of AD patients (p-value = 0.022, p-value = 0.033, p-value = 0.041). 

Conclusion: Our study provides a better understanding of the link between CSF GAP-43 and 
WM changes in patients with MCI and AD. Our findings support the application of CSF GAP-43 
as an effective biomarker for monitoring individuals at high risk of AD in the early stages. 

Keywords: Alzheimer’s Disease, white matter, GAP-43, synaptic, DTI 

1- Marie Curie Science Research Center, Greensboro, USA 
2- Department of Biology, Marie Curie Science Research Center, Greensboro, USA  
3- MEU Research Unit, Middle East University, Amman, 11831, Jordan 

 

*Correspondence to Marjan 
Assefi, Marie Curie Science 
Research Center, 
Greensboro, USA  

Email: 
massefi@aggies.ncat.edu 

**Data used in the preparation of this 
article were obtained from the 
Alzheimer's disease Neuroimaging 
Initiative (ADNI) database 
(adni.loni.usc.edu). As such, the 
investigators within the ADNI 
contributed to the design and 
implementation of ADNI and/or 
provided data but did not participate in 
the analysis or writing of this report. A 
complete listing of ADNI investigators 
can be found at: 
http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf 

Published online 29 April 
2024 

Cite this article as: Assefi, M., Sharafshah, A., Ashtari, A., Afshar, S., Pour Moghtader, K., Waheed, Y. Level of CSF GAP-43 and white matter 
microstructural changes in Alzheimer's disease. Neurology Letters, 2024; 3(Supplementary 1 (Diagnostic and Therapeutic advances in 
Neurodegenerative diseases)): 1-6. doi: 10.61186/nl.3.2.1. 

https://doi.org/10.61186/nl.3.2.1 



 

2 
 

Assefi et al. Neurology Letters.  2024; 3: eS1 

Neurology Letters│www.neurologyleƩers.com 

assessment in AD clinical trials. In recent years, progress has 
been made in the evaluation of synaptic biomarkers in the  
cerebrospinal fluid (CSF). Depending on the localization of  
the synaptic protein, synaptic biomarkers can be divided into 
pre- and postsynaptic biomarkers. Several studies have reported 
altered CSF concentrations of presynaptic proteins, such as 
growth-associated protein 43 (GAP-43), synaptosomal-
associated protein 25 (SNAP-25), and synaptotagmin-1, as well 
as the postsynaptic protein neurogranin, in AD patients (5-8). 
Among these synaptic proteins, GAP-43 plays an important role 
in the learning and memory storage process (9, 10). 
Diffusion Tensor Imaging (DTI) enables the in vivo, non-
invasive assessment of neurodegeneration, white matter (WM) 
disruption, and synaptic damage in patients with Alzheimer's 
disease (AD) (10). Emerging research suggests that WM changes 
may serve as a marker for pathological significance, potentially 
offering a promising target for the early diagnosis of dementia 
(11). The evidence regarding the association between CSF GAP-
43 and WM microstructure in the AD continuum is currently 
insufficient. Given the potential predictive role of CSF GAP-43 
for AD, the current study aimed to investigate the relationship 
between CSF GAP-43 levels and DTI-detected microstructural 
changes in the WM. 
 

Materials and Methods 
 
Data Acquisition 
The data for this investigation was obtained from the 
Alzheimer's Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). ADNI was established in 2003 as a public-
private partnership directed by Principal Investigator Michael 
W. Weiner, MD. The primary objective of ADNI is to assess the 
progression of mild cognitive impairment (MCI) and early 
Alzheimer's disease (AD) by combining serial PET, MRI, 
biological markers, and clinical and neuropsychological 
measures. The most up-to-date information is available at 
www.adni-info.org. 
 
Participants 
The study included baseline data from participants in the 
ADNI-2 and ADNI-GO cohorts who had available CSF GAP-43 
and DTI statistical results. The sample comprised 39 control 
normals (CN), 138 MCI, and 39 AD subjects. All MCI subjects 
were diagnosed based on the following criteria: Mini-Mental 

State Examination (MMSE) scores between 24 and 30, a 
memory complaint, objective memory loss measured by 
education-adjusted scores on the Wechsler Memory Scale 
Logical Memory II, a Clinical Dementia Rating (CDR) of 0.5, 
absence of significant impairment in other cognitive domains, 
essentially preserved activities of daily living, and absence of 
dementia. 
 
CSF GAP-43 Measurement 
The cerebrospinal fluid (CSF) levels of growth-associated 
protein 43 (GAP-43) were measured using an in-house enzyme-
linked immunosorbent assay (ELISA) method developed at the 
Clinical Neurochemistry Lab, University of Gothenburg, 
Sweden. The ELISA was developed by using a combination of 
the monoclonal GAP-43 antibody NM4 as the coating antibody 
and the polyclonal GAP-43 antibody ABB-135 as the detector 
antibody, which recognizes the C-terminal of GAP-43. The 
ELISA assay range for CSF-GAP43 was from 312 to 20,000 
pg/ml. Quality control CSF samples were provided by the 
Clinical Neurochemistry Laboratory, Sahlgrenska University 
Hospital, Mölndal, Sweden. The details of the ELISA assay for 
the measurement of CSF GAP-43 have been described 
previously. 
 
DTI Processing and Image Analysis 
The results of the DTI regions of interest (ROI) analysis were 
downloaded from the ADNI cohort. DTI scans underwent 
normalization using the Montreal Neurological Institute and 
Hospital (MNI) nu_correct tool 
(www.bic.mni.mcgill.ca/software/). Non-brain tissues were 
removed using the Brain Extraction Tool (BET) from FSL (12). 
The T1-weighted image was aligned to a version of the Colins27 
brain template (13) using FSL's flirt (14). A single diffusion 
tensor was modeled at each voxel in the brain [19]. Scalar 
anisotropy and diffusivity maps were obtained from the 
resulting diffusion tensor eigenvalues (λ1, λ2, λ3). Fractional 
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), 
and axial diffusivity (AxD) were calculated. Lower FA and 
higher RD, AxD, and MD are related to demyelination and 
degeneration in white matter. The FA image from the Johns 
Hopkins University (JHU) DTI atlas was registered to each 
subject using a shared information-based elastic registration 
algorithm. To prevent label intermixing, nearest-neighbor 
interpolation was used to apply the deformation to the 
stereotaxic JHU "Eve" white matter atlas labels. This placed the 

Table1. Participants characteristic 
 

Demographic and health characteristics CN (39) MCI(138) AD(39) P-value 
Age, years 73.1(±6.3) 72.8(±6.8) 74.4 (±8.1) 0.655 
Education, years 16.4(±2.6) 16.0(±2.6) 15.2(±2.9) 0.084 
MMSE score 28.8(±1.4) 27.9(±1.9) 23.4(±1.8) <0.001 
CSF GAP-43 level, pg/mL 4586.9 (±1240.4) 5322.7(±1539.6) 6083.3(±1136.3) <0.001  

Values are shown as mean(±SD), Mini-Mental State Examination(MMSE), Control normal (CN), Mild cognitive 
impairment (MCI), and Alzheimer's disease (AD); results of ANOVA analysis between groups noted as p-value 
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atlas ROIs in the same coordinate space as the DTI maps. The 
average FA and MD were then calculated within the boundaries 
of each ROI mask for each subject. Tensor-based spatial 
statistics and tract-based spatial statistics (TBSS) were also 
performed to extract the mean FA in the ROIs along with the 
skeleton. 
 
Statistical Analysis 
The SPSS software (Statistical Package for the Social Sciences, 
version 16, USA) was used for data analysis. First, simple linear 
regression models were conducted to assess the association of 
CSF-GAP43 with clinical and demographic. Next, the 
association of CSF-GAP43 and DTI values (including MD, RD, 
AxD, and FA) in the brain was measured using simple linear 
regression models. To address multiple comparisons and type I 
errors, the Benjamini-Hochberg method was utilized. Results 
with a p-value ≤ 0.05 were considered statistically significant. 
 
Results 
 
Patient demographic 

The mean age of the studied population was 73.35 ± 6.81 years, 
and the mean Mini-Mental State Examination (MMSE) score  
was 27.33. The details of the demographic characteristics are 
described in Table 1. 
 
Associations between Baseline Characteristics and CSF-
GAP43 Levels 
By investigating the associations between relevant baseline 
characteristics and CSF-GAP43 levels, stratified by clinical 
groups we observed that age was significantly associated with 
CSF-GAP43 levels (β = 0.44, p-value < 0.001) and MMSE (β = -
0.34, p-value < 0.001) in all participants. 
 
CSF-GAP43 and DTI  
Linear regression analysis in CN subjects revealed no association 
between CSF-GAP43 and DTI values (including MD, RD, AxD, 
and FA) (Figure 1). However, the same analysis in MCI 
participants showed a significant association for all DTI values. 
We found a significant association between CSF-GAP43 and FA 
(β = 0.31, p-value = 0.011). Also, a negative association was 
found between CSF-GAP43 concentration and AD, MD, and 

Figure1. Association between CSF-GAP43 and DTI measures in CN subjects. 
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RD values in MCI (β = -0.32, p-value = 0.013, β = -0.35, p-value 
= 0.004, β = -0.28, p-value = 0.017) (Figure 2). 
The regression models also revealed a positive association 
between CSF-GAP43 and FA value in AD subjects (β = 0.34, p-
value = 0.028) (Figure 3). Furthermore, increased CSF-GAP43 
level was associated with lower AD, MD, and RD values in brain 
WM of AD patients (β = -0.36, p-value = 0.022, β = -0.30, p-
value = 0.033, β = -0.25, p-value = 0.041). 
 
Discussion 
There are limited reports on the association between CSF-
GAP43 and WM structures across the AD continuum. Our 
results showed significant associations between CSF-GAP43 
and abnormal WM microstructure in various brain regions in 
MCI and AD participants. The results suggest that the 
associations of CSF-GAP43 with WM might be a biomarker to 
detect neurodegeneration, which also tracks well with the 
observed changes. 
There is substantial evidence that synaptic loss is correlated with 
cognitive decline in AD, and synaptic dysfunction is one of the 
earliest detectable changes in many neurodegenerative diseases, 
which may appear even before neuronal loss (15). The 

significant role of synaptic dysfunction in the pathology of AD 
promotes the analysis and quantification of synaptic proteins. 
GAP-43 is a synaptic membrane protein that plays an important 
role in the regulation of synaptic plasticity, learning, and 
memory functionality (16, 17). Previous studies have reported 
that the concentration of CSF GAP-43 was increased in AD. 
Also, it was demonstrated that CSF GAP-43 was correlated with 
CSF phosphorylated tau (p-tau), CSF total tau (t-tau), and 
plasma p-tau, which might reflect a common pathogenic process 
between GAP-43 and tau pathology. It has been suggested that 
high concentrations of CSF t-tau represent axonal degeneration 
and high concentrations of CSF p-tau represent the increased 
formation of neurofibrillary tangles, and that these two events 
are associated (18, 19). As CSF GAP-43 was highly correlated 
with CSF p-tau and CSF t-tau, this may indicate that increased 
CSF GAP-43 concentration is associated with the degeneration 
of axons or presynaptic terminals or the regeneration of axons 
and/or synapses (20). Moreover, GAP-43-related synaptic 
changes are linked to faster Aβ-related tau spread across 
connected regions and synapses could be key targets for 
preventing tau spreading in AD (21, 22). 

Figure2. Association between CSF-GAP43 and DTI measures in MCI subjects. 
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DTI metrics can provide information about the different 
specifications of WM. However, the exact relationship between 
the four DTI values - FA, RD, AxD, and MD - and the 
pathophysiological mechanisms of AD has not been completely 
understood. Commonly, lower FA and higher RD, AxD, and 
MD have been reported in relation to demyelination and 
degeneration in WM (21). Several studies have reported the 
association between CSF levels of GAP-43 and WM damage in 
both MCI and AD (22-26). 
Omega-3 fatty acids, particularly docosahexaenoic acid (DHA), 
are crucial for maintaining synaptic integrity in the brain (27). 
They are hypothesized to benefit AD by enhancing synaptic 
plasticity, modulating neuroinflammatory pathways, and 
facilitating the clearance of amyloid-beta plaques, a hallmark of 
Alzheimer's pathology (28). However, the specific impacts of 
omega-3s on Alzheimer’s-related brain changes require further 
empirical investigation to be definitively established. Despite 
these intriguing possibilities, the direct role of intestinal 
parasitic infections in the pathogenesis of Alzheimer's disease 
remains underexplored and requires more rigorous scientific 
investigation to clarify any definitive links (29). 
 

Conclusion 
Our study provides a better understanding of the link between 
CSF GAP-43 and WM changes in patients with MCI and AD. 
Our findings support the application of CSF GAP-43 as an 
effective biomarker for monitoring individuals at high risk of 
AD in the early stages. Recent studies have shown that CSF 
GAP-43 is a reliable biomarker for the conversion from MCI to 
AD, and our research reflects the association of CSF GAP-43 
with WM damage as measured by neuroimaging. However, 
further longitudinal studies are necessary to validate the 
predictive role of CSF GAP-43 in cognitive decline. 
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